Study of Cutting Temperature in Orthogonal Milling
نویسندگان
چکیده
Finite Element Method (FEM) based techniques are available to simulate metal cutting processes and offer several advantages including prediction of tool forces, distribution of stresses, and temperatures, estimation of tool wear, and residual stresses on machined surfaces, optimization of cutting tool geometry, and cutting conditions. However, work material flow stress and friction characteristics at cutting regimes are not always available. The complexity of the phenomena, met within this framework, often limits the approaches to a configuration known as “orthogonal cutting”. In this work we approach in the experimental study, between other aspects, of the measure cutting temperature employing different techniques: pyrometers, thermocouples and a thermographic camera. We began the analysis of an orthogonal milling. These results have to allow us to check the numerical model of the process.
منابع مشابه
Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts
Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...
متن کاملInfluence of Water Cooling on Orthogonal Cutting Process of Ti-6Al-4V Using Smooth-Particle Hydrodynamics Method
Temperature control during the cutting process with different parameters such as cutting velocity and applying water cooling is essential to decrease the cutting force, increase the life of the cutting tool and decrease the machined surface temperature of work-piece. In this research, the temperature of machined surface and the chip-tool interface in orthogonal cutting process of Ti-6Al-4V were...
متن کاملAn Instantaneous Rigid Force Model For 3-Axis Ball-End Milling Of Sculptured Surfaces
An instantaneous rigid force model for prediction of cutting forces in ball-end milling of sculptured surfaces is presented in this paper. A commercially available geometric engine is used to represent the cutting edge, cutter and updated part geometries. The cutter used in this work is an insert type ball-end mill. Intersecting an inclined plane with the cutter ball nose generates the cutting...
متن کاملModelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملSurvey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process
Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...
متن کامل